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A theoretical model is developed for the sound generated when a convected dis-
turbance encounters a cambered airfoil at non-zero angle of attack. The model is
a generalization of a previous theory for a flat-plate airfoil, and is based on a lin-
earization of the Euler equations about the steady, subsonic flow past the airfoil.
High-frequency gusts, whose wavelengths are short compared to the airfoil chord, are
considered. The airfoil camber and incidence angle are restricted so that the mean
flow past the airfoil is a small perturbation to a uniform flow. The singular perturba-
tion analysis retains the asymptotic regions present in the case of a flat-plate airfoil:
local regions, which scale on the gust wavelength, at the airfoil leading and trailing
edges; a ‘transition’ region behind the airfoil which is similar to the transition zone
between illuminated and shadow regions in optical problems; and an outer region, far
away from the airfoil edges and wake, in which the solution has a geometric-acoustics
form. For the cambered airfoil, an additional asymptotic region in the form of an
acoustic boundary layer adjacent to the airfoil surface is required in order to account
for surface curvature effects. Parametric calculations are presented which illustrate
that, like incidence angle, moderate amounts of airfoil camber can significantly affect
the sound field produced by airfoil–gust interactions. Most importantly, the amount
of radiated sound power is found to correlate very well with a single aerodynamic
loading parameter, αeff , which is an effective mean-flow incidence angle for the airfoil
leading edge.

1. Introduction
Sound generated through the unsteady interaction of convected disturbances (gusts)

with airfoils is a problem of importance in a number of aeroacoustic applications.
Most analyses of airfoil–gust interactions have utilized the classical linearized ap-
proach, in which the total flow is represented as the sum of a uniform flow, an O(α)
(relative to the uniform field) steady disturbance, and an O(ε) unsteady disurbance.
If α and ε are small and of the same order, the O(α) perturbation to the mean flow
can be ignored in analysing the unsteady flow. However, in many cases the steady
aerodynamic loading of the airfoils is quite large so that α� ε, and it then becomes
desirable to account for the effects of the mean-flow distortion on the unsteady
motion.

In a previous paper (Myers & Kerschen 1995, hereafter referred to as MK95)
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we examined the influence of one contribution to the steady aerodynamic loading,
the airfoil incidence angle, on the sound generated by the interaction of airfoils
with convected disturbances. We concentrated on the case of a mean flow which is
compressible but subsonic, and a gust wavelength which is short compared to the
airfoil chord. This paper extends the theory of MK95 to include the other contribution
to the airfoil steady loading, the airfoil camber. Typically, the incidence angle, camber,
and thickness of an airfoil are of the same order of magnitude, and introduce effects
of comparable importance on the sound field. However, it will be seen in this paper
that the effects of incidence angle and camber, which determine the steady loading,
combine in a natural way. Noise source terms associated with airfoil thickness can be
superposed with those due to steady loading, and will be presented in a subsequent
paper. Additional discussion of previous research related to the influence of airfoil
steady loading on gust–airfoil interaction noise can be found in MK95.

The approach used in MK95 is based upon Goldstein’s (1978) extension of rapid-
distortion theory to compressible flows. Rapid-distortion theory considers inviscid
linear unsteady disturbances to an irrotational base flow. In contrast to methods
based upon the acoustic analogy, there is no modelling of source terms, which
becomes difficult in the high-frequency (highly non-compact) limit.

Goldstein’s equations, while linear, contain variable coefficients which do not have
a closed-form representation in the general case. Kerschen & Myers (1987) simplified
the governing equations under the assumption of a mean flow which is a small
perturbation to a uniform flow. The O(α) steady-flow perturbation is assumed large
compared to the O(ε) unsteady disturbances, i.e. ε� α� 1.

In MK95, the simplified governing equations were solved for the specific case of a
flat-plate airfoil at a small angle of attack. The assumptions of a high-frequency gust
and a small-perturbation mean flow allowed a closed-form asymptotic solution. The
singular-perturbation analysis contained four asymptotic regions: two local regions,
which scale on the disturbance wavelength and reside at the leading and trailing
edges of the airfoil; a ‘transition region’, similar to the zone between illuminated and
shadow regions in optical problems, lying downstream of the airfoil at shallow angles;
and an outer region away from the airfoil edges and wake, where the solution has a
geometric-acoustics form.

Numerical results in MK95 showed that moderate levels of steady loading due
to incidence angle can have a significant influence on the sound field. The effect
is most pronounced at higher frequencies and higher Mach numbers. Analysis of
the flat-plate solution also confirmed sound-generation mechanisms first analysed via
the acoustic analogy (Ffowcs Williams & Hawkings 1969a, b and Ffowcs Williams
& Hall 1970), specifically volume sources arising from Reynolds stress fluctuations
due to interaction of the gust with mean-flow gradients, and the scattering of these
quadrupole fields by the airfoil surface. In addition to confirming these mechanisms
by which sound is generated through vorticity distortion, the flat-plate solution also
revealed that local scattering by spatial gradients in the propagation medium can be
an important sound-generating mechanism at high Mach numbers.

In this paper, the equations derived by Kerschen & Myers (1987) are solved in the
high-frequency (k � 1) limit for the case of a zero-thickness cambered airfoil. The
camber distribution and incidence angle of the airfoil are both O(α). As for the flat
plate, the solution is developed as an asymptotic series based upon the small-loading
and high-frequency parameters. The asymptotic regions present for a flat-plate airfoil
also exist when airfoil camber is present. Treatment of airfoil curvature effects requires
the introduction of an additional region, as follows.
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Acoustic propagation around curved surfaces exhibits such phenomena as ‘creeping
waves’ on convex surfaces and ‘whispering galleries’ on concave surfaces. These
phenomena are difficult to describe in a simple mathematical form. Some of the
theories are outlined in Myers & Kerschen (1992), for the related problem of a
three-dimensional source in a linearly stratified medium. In the present case where
the airfoil chord is small compared to its radius of curvature, a relatively simple
boundary-layer theory can be employed to describe the near-surface propagation.
The boundary layer is effectively an additional ‘transition region’, this time residing
next to the airfoil surface. Like the downstream transition region, it contains features
of both ray and diffraction fields.

In addition to the analysis in the new asymptotic region, some modifications to the
flat-plate theory are required in the other asymptotic regions. An extensive parametric
study is performed to identify the dominant factors influencing the sound field in
airfoil–gust interactions. It will be shown that, under a wide range of conditions, the
total sound power is well correlated by a single aerodynamic loading parameter – the
effective leading-edge incidence angle, αeff .

2. Formulation
2.1. Summary of the general theory

The equations describing the interaction of airfoils with small-amplitude convected
disturbances are presented in a general form in MK95. Here we extract the most
important results, and introduce slight notational changes. Details of the derivations
may be found in MK95 and Kerschen & Myers (1987).

We consider convected vortical and entropic disturbances having a harmonic rep-
resentation in the uniform flow of speed U∞ far upstream,[

v′

s′

]
=

[
εU∞(At, An, A3)

2εcpB

]
eik(φ+knψ+k3x3−t), (2.1a)

where

k = ωb/U∞ (2.1b)

is the reduced frequency of unsteady aerodynamic theory, based upon the airfoil semi-
chord b. The dimensionless parameter ε is assumed to be small. Time is normalized
by b/U∞, and cp is the specific heat at constant pressure. The independent variables,
which are the potential-streamfunction coordinates introduced in MK95, are non-
dimensionalized by

φ = φp/U∞b, ψ = β∞ψp/U∞b, and x3 = x3p/b,

where φp and ψp are the physical potential and streamfunction and x3p the spanwise
position. Since the incident disturbances convect along the mean-flow streamlines, the
analysis is simpified by the use of (φ, ψ) coordinates. The upper and lower surfaces
of the airfoil are given by ψ = 0±, and φ = 0 at the leading-edge stagnation point.

The disturbances are convected by a mean flow which is an O(α) perturbation
to a uniform flow (ε � α � 1). The unsteady irrotational field, generated by the
interaction of the convected disturbance with the airfoil and the non-uniform mean
flow, can be described in terms of a modified potential h(φ, ψ) defined by

h(φ, ψ) =
G′

εU∞b
e−ik(k3x3−t)eikM2

∞φ/β
2
∞e−M

2
∞q, (2.2)
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where G′ is the physical velocity potential and q(φ, ψ) is defined in (2.4). The modified
potential satisfies

L0(h) + L1(h) = kS (φ, ψ)eikΩ, (2.3a)

where L0 is the standard Helmholtz operator

L0(h) =
∂2h

∂φ2
+
∂2h

∂ψ2
+ k2w2h, (2.3b)

w2 = (δM∞)2 − (k3/β∞)2, (2.3c)

M∞ is the upstream Mach number, β∞ = (1 −M2
∞)1/2, and δ = 1/β2

∞. The operator
L1 contains variable coefficients, and accounts for effects of the mean-flow gradients
on the acoustic propagation. This operator takes the form

L1(h) =
(γ + 1)M4

∞
β2
∞

{
q

[
∂2h

∂ψ2
+ 2ikδ

∂h

∂φ
+ k2(w2 + δ2)h

]
− ∂q

∂φ

[
∂h

∂φ
− ikδh

]}
−2k2w2β2

∞qh. (2.3d)

The function q(φ, ψ) characterizing the non-uniform medium is the normalized per-
turbation (O(α)) flow speed:

U0

U∞
= 1 + q(φ, ψ) + O(α2), (2.4)

where U0 is the total mean-flow speed. The amplitude S(φ, ψ) of the source term in
(2.3a) is given by

S(φ, ψ) =
2

β2
∞

{
i(A∗t − knAnβ3

∞)q + i(knA
∗
t β

2
∞ + Anβ∞)µ

+
1

k

[
A∗tM

2
∞
∂q

∂φ
+ AnM

2
∞β∞

∂q

∂ψ

]}
, (2.5a)

where A∗t = At − B, and β∞µ is the perturbation in flow angle in the physical plane.
The phase of the source term is

Ω = δφ+ knψ + g(φ, ψ), (2.5b)

where

g(φ, ψ) =

∫ φ

−∞

[
U2
∞

U2
0 (η, ψ)

− 1

]
dη. (2.5c)

The integral g(φ, ψ) (Lighthill’s Drift function) can be approximated by

g(φ, ψ) = −2Re [F(φ+ iψ)] + O(α2), (2.5d)

where F is the perturbation complex potential for the compressible mean flow,
with the arbitrary constant in F chosen such that g → 0 as φ → −∞. Since the
perturbation speed q and flow angle β∞µ are O(α), as is the complex potential F , then
the perturbation operator L1, source amplitude S(φ, ψ), and drift function g(φ, ψ) are
also O(α). For convenience in subsequent definitions we have not explicitly extracted
the parameter α.

The boundary condition applied on the airfoil surface is[
∂h

∂ψ
+M2

∞
∂q

∂ψ
h

]
06φ6φTE± ,ψ=0±

= −
[
An

β∞
(1−M2

∞q)− 2A∗t µ

]
eikΩ, (2.6)
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Figure 1. Cambered airfoil at angle of attack αi encountering a convected disturbance.
Disturbance wavelength λ is assumed to be much smaller than the airfoil chord 2b.

where φTE± are the locations of the trailing edge in (φ, ψ)-space for the upper and
lower surfaces of the airfoil, respectively. The radiation condition applies far away
from the airfoil.

The modified pressure p is related to the physical unsteady pressure component p′

by

p =
−p′eik(−k3x3+t)

ερ∞U2
∞

. (2.7a)

It is computed from the modified potential h by the relation

p =

[
∂h

∂φ
− ikδh

]
e−ikδM2

∞φ. (2.7b)

2.2. Analysis for a cambered airfoil

The results of §2.1 apply to a general small-perturbation mean flow; we now specif-
ically consider the problem depicted in figure 1. A cambered airfoil at incidence
angle αi encounters a convected disturbance whose wavelength is short compared
to the airfoil chord. The airfoil maximum camber d/2b (more relevant measures of
camber will be introduced shortly) and the incidence angle αi are assumed to be O(α).
The reduced frequency k is assumed large; the theory is valid for k = O(α−γ), with
2/3< γ < 2. Note that we have changed the incidence angle from α (used in MK95)
to αi.

The functions q, µ, and g required in (2.3) are all derivable from the complex
potential F for the mean-flow perturbation. The function F for a compressible flow
can be obtained from the corresponding incompressible potential through a Prandtl–
Glauert transformation. While the incompressible potential for a flat plate can be
found through a conformal mapping, no such mapping exists for a general cambered
airfoil. However, since the mean-flow quantities are only required to O(α) accuracy,
approximate results from thin-airfoil theory can be used. The boundary condition can
then be transferred from the airfoil surface to a line parallel to the upstream flow.
We utilize the result of Cheng & Rott (1954), who showed that the incompressible
(denoted by the superscript in) complex velocity is given by

qin − iµin = − i

π

(
zin − 2b

zin

)1/2 ∫ 2b

0

( s

2b− s

)1/2 N ′(s)

zin − sds+ O(α2), (2.8)

where zin = x1 + ix2, the coordinates (x1, x2) are dimensional, and the airfoil shape



226 M. R. Myers and E. J. Kerschen

is given by x2 = N(x1). The prime denotes differentiation. For α � 1 the effects of
camber and incidence can be superposed, i.e. we can set N(x1) = −αix1 + n∗(x1),
where n∗(x1) is the dimensional camber distribution of the airfoil, measured from
the line segment connecting the leading and trailing edges. After applying a Prandtl–
Glauert transformation and switching to non-dimensional potential-streamfunction
coordinates, we find that (2.8) becomes

q − iµ =
iαi
β∞

[
1−

(
ζ − 2

ζ

)1/2
]
− i

πβ∞

(
ζ − 2

ζ

)1/2 ∫ 2

0

( s

2− s

)1/2 n′(s)

ζ − sds+ O(α2),

(2.9)
where ζ = φ + iψ and the non-dimensional form of the airfoil camber distribution
function n(s) = n∗/b is O(α).

The corresponding complex potential is

F(ζ) = Fc(ζ) + Fi(ζ), (2.10)

where Fc is the potential for a cambered airfoil at zero incidence and Fi applies to a
flat-plate airfoil at incidence angle αi (equation (3.1) of MK95):

Fi(ζ) =
iαi
β∞

(log[ζ − 1 + (ζ(ζ − 2))1/2] + ζ − (ζ(ζ − 2))1/2 + Ci). (2.11)

The function Fc may be obtained by integrating the camber portion of (2.9) with
respect to ζ, interchanging the order of integration, and performing the inner inte-
gration. The result is

Fc(ζ) =
−i

β∞π

∫ 2

0

n′(s)
( s

2− s

)1/2
[
log

[
1 + ((ζ − 2)/ζ)1/2

1− ((ζ − 2)/ζ)1/2

]
−i

(
2− s
s

)1/2

log

[
i((2− s)/s)1/2 + ((ζ − 2)/ζ)1/2

i((2− s)/s)1/2 − ((ζ − 2)/ζ)1/2

]
+ Cc

]
ds. (2.12)

The arbitrary constants Cc and Ci will be specified during the various applications.
As for the flat plate, our approach to solving (2.3) is through an asymptotic series

for large k and small α. We retain terms which are O(αk1/2, 1/k1/2) relative to the
uniform-flow result, but ignore O(α, α2k, 1/k) effects. The asymptotic regions utilized
in the singular-perturbation analysis are shown in figure 2(a). Figure 2(b) illustrates
the potential-streamfunction coordinate systems employed in the various asymptotic
regions. Relative to the corresponding figures for the flat plate, an additional boundary
layer is present, lying next to the airfoil surface and beginning near the leading edge.
This new region, labelled the ‘leading-edge transition region’, accounts for acoustic
propagation near the curved surface. The boundary layer downstream of the trailing
edge, present also for a flat plate, has been relabelled the ‘trailing-edge transition
region’. The following sections provide the details of the analysis in each of the
asymptotic regions.

3. Local leading-edge region
The local leading-edge expansion of the mean-flow perturbation velocity can be

readily obtained from (2.9). By inserting the local coordinates

Φ = kφ, Ψ = kψ (3.1)
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Local
leading-edge

region

Leading-edge
transition region

Local
trailing-edge

region

Trailing-edge
transition region

O(1/k)

O(1/k)O(k–1/2)

O(k–1/2)

(a) Outer region

(b)

ψ

Ψ=kψ
Φ=kφ φ

ψt

η=k1/2ψ

Ψt=kψt
Φt=kφt φt

Φt=kφt φt

Figure 2. (a) Illustration of asymptotic regions in the physical plane, with sizes given in dimensionless
coordinates. (b) Illustration of airfoil surface and coordinate systems in potential-streamfunction
space.

into (2.9) and expanding for large k, we find

q − iµ =
αeff k

1/2

β∞

√
2(Φ+ iΨ )−1/2 + O(α, α2k), (3.2)

where

αeff = αi − α1c, (3.3a)

and

α1c =
1

π

∫ 2

0

(1− s)n(s)ds
[s(2− s)]3/2

. (3.3b)

Equation (3.2) describes an inverse-square-root flow around the sharp leading edge,
identical to that for a flat plate but with a modified strength, αeff . The parameter αeff

will later be shown to be a dominant correlating parameter for the sound power level.
The source terms in the equations governing the unsteady disturbance in the local

leading-edge region contain the local expansions of the flow speed q and conjugate
function µ, and the local expansion of the drift function g. As for the flat-plate airfoil,
the drift function vanishes to O(α) at the leading edge of a cambered airfoil. The local
expansions for q, µ, and g are then identical to the expressions derived previously for
a flat-plate airfoil, except that α is replaced by αeff . Therefore the αk1/2 � 1 solution
for the modified potential H(Φ,Ψ ) in the local leading-edge region derived in MK95
applies here as well, when α in MK95 is replaced by αeff . By expressing H(Φ,Ψ )
in outer coordinates and expanding for large k, we obtain an asymptotic matching
condition for the leading-edge behaviour of the geometric-acoustic field for the outer
region,

h ∼
[
D0(θ)

(
1 + αeff k

1/2

(
−2iβ∞w +

i(γ + 1)M4
∞(δ − w cos θ)2

β3
∞w

)
(2kr)1/2 cos 1

2
θ

)
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+αeff k
1/2

(
D1(θ) + D2(θ) + D3(θ)

)]
eikwr

(kr)1/2
+ 0(k−3/2, αk−1/2), (3.4)

where (r, θ) is the polar form of (φ, ψ) and D0, D1, D2 and D3 are the directivity
functions defined in (3.8b), (3.11b), (3.15e), and (3.26c) of MK95. The directivity
functions are repeated for convenience in the Appendix. The term containing αeff

which multiplies D0 is a secular term arising in the analysis of the local leading-
edge region; this term matches with the phase distortion σ1l (defined below) of the
geometric-acoustic field in the outer region. The directivity functions Di(θ) are used
to specify the amplitude of the geometric-acoustic field. From (3.4) it can be seen that
effects due to camber enter the local leading-edge region in a simple way, through the
single parameter αeff .

4. Outer region
The analysis of MK95 shows that the solution in the outer region contains four

components: a particular solution hp that accounts for the volume-source term in
(2.3a), a complementary solution hc required to cancel the gust upwash (2.6) through
the airfoil surface, and ray-acoustic fields hl and ht that emanate from the local
regions at the leading and trailing edges of the airfoil. The components hp and hc are
unrelated to the sound field and were discussed in MK95. Here, we present results
for the leading- and trailing-edge ray fields.

In MK95, it was shown that the geometric-acoustic field emanating from the
leading edge can be written in a general form, in terms of the O(α) perturbation flow
speed q which characterizes the spatial variations of the medium, as

hl = k−3/2Al(r, θ)eikσl + O(αk−3/2, k−5/2), (4.1a)

where

σl = wr + σ1l(r, θ) + O(α2), (4.1b)

σ1l = V (θ)

∫ r

0

q(r′, θ)dr′, (4.1c)

V (θ) = −β2
∞w +

(γ + 1)M4
∞

2β2
∞w

(δ − w cos θ)2, (4.1d)

and Al is determined through asymptotic matching with the local leading-edge region.
The O(α) phase distortion σ1l can be written in terms of the perturbation complex
potential:

σ1l = V (θ)Re
{

e−iθF(reiθ)
}
. (4.2)

The function F is given by (2.10)–(2.12) with the arbitrary constants Ci and Cc both
set to -iπ, so that (4.2) vanishes at the airfoil leading edge. The asymptotic expansion
of (4.2) for large r, required for determination of the far-field sound, is

σ1l ∼
Vθ

β∞

[
αg sin θ log 2r − αg(θ − π) cos θ + (αi − α3c) sin θ

]
+ O(α/r), (4.3a)

where θ lies in the range 0 6 θ 6 2π,

αg = αi + α2c, (4.3b)

α2c =
1

π

∫ 2

0

n(s)ds

s1/2(2− s)3/2
, (4.3c)
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and

α3c =
1

π

∫ 2

0

n(s)ds

(s(2− s))1/2
. (4.3d)

The only numerical integrations required to determine the phase distortion of the
far-field sound are those defining α2c and α3c.

The matching procedure which determines the amplitude function Al(r, θ) is nearly
identical to the procedure described in MK95 for the flat-plate airfoil. Upon repeating
that procedure we find that the amplitude is given by the local leading-edge directivity
series with a cylindrical-wave decay:

Al(r, θ) = r−1/2Dl(θ), (4.4a)

where

Dl(θ) ≡
[
D0(θ) + αeff k

1/2(D1(θ) + D2(θ) + D3(θ))
]
, (4.4b)

with the functions Di given in (3.4).
The geometric-acoustic field emanating from the trailing edge has a similar form,

ht = k−2At(rt, θt)e
ikσt + O(αk−2, k−3), (4.5)

where the trailing-edge coordinate system (rt, θt) is described in §6. The trailing-edge
phase function is given by

σt = wrt + σ1t(rt, θt) + O(α2), (4.6a)

σ1t = (−β2
∞w +

(γ + 1)M4
∞

2β2
∞w

(δ − w cos θt)
2)

∫ rt

0

qt(r
′
t, θt)dr

′
t (4.6b)

= V (θt)Re
{

e−iθtFt(rte
iθt)
}
. (4.6c)

Here qt and Ft are the flow speed q and complex potential F with the leading-
edge coordinates expressed in terms of trailing-edge coordinates, and the arbitrary
constants Ci and Cc are set to −2 and 0 respectively so that Ft vanishes at the trailing
edge. The asymptotic expansion of σ1t for large rt is

σ1t(θt) ∼
V (θt)

β∞

[
αg sin θt log 2rt − αgθt cos θt − (αi + α3c) sin θt

]
+ O(α/rt), (4.7)

where θt lies in the range −π 6 θt 6 π. The trailing-edge amplitude function At is
determined by matching with the local trailing-edge region, which is discussed in §6.

5. Leading-edge transition region
In the geometric-acoustic approximation employed in the outer region, information

travels along rays emanating from the airfoil edges. Hence the boundary condition
along the airfoil surface away from the edges cannot be incorporated directly into the
geometric-acoustic solution. For a flat-plate airfoil the leading-edge ray field satisfies
the homogeneous form of the boundary condition (2.6), because the airfoil maintains
the shape assumed in the leading-edge region throughout its length. For a cambered
airfoil, however, the shape changes along the length, and it is thus not surprising that
the leading-edge ray field yields a non-zero normal-velocity component on the airfoil
surface. Differentiation of (4.1) with respect to ψ gives

∂hl

∂ψ

∣∣∣∣
ψ=0±

=
iDl(0, 2π)V (0)

k1/2φ3/2

∫ φ

0

φ′
∂q

∂ψ
(φ′, 0)dφ′eikσl (r=φ,θ=0,2π) + O(α/k). (5.1a)
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The notation Dl(0, 2π) implies that the directivity function Dl(θ) is to be evaluated
at θ = 0 for the upper surface of the airfoil (ψ = 0+) and θ = 2π for the lower
surface. Likewise, the value of θ in σl (given in (4.1)) is 0 on the airfoil upper surface
and 2π on the lower surface. By using the Cauchy–Riemann conditions to relate the
ψ-derivative of the perturbation speed q to the φ-derivative of its conjugate harmonic
µ, and using the mean-flow boundary condition to equate β∞µ to the body slope, we
find that (5.1a) may be rewritten in terms of the camber distribution function n(x) as

∂hl

∂ψ

∣∣∣∣
ψ=0±

=
iDl(0, 2π)V (0)

k1/2φ3/2β∞

[
φn′(φ)− n(φ)

]
eikσl (r=φ,θ=0,2π). (5.1b)

The quantity in square brackets may be recast (using Taylor’s theorem with n(0) = 0)
as |n′′(φa)|φ2/2, 0 < φa < φ, and thus represents an average curvature of the airfoil
segment between the leading edge and the point φ. Modifications to the flat-plate
theory must be made to account for the finite radius of curvature of the airfoil.

The curvature effects are accounted for by introducing an acoustic boundary layer
of extent ψ = O(k−1/2), in which the modified potential satisfies a parabolic differential
equation. (The Reynolds number is assumed large so that the viscous boundary layer is
thin compared to this acoustic boundary layer and can be ignored in our analysis.) The
acoustic boundary layer is similar in form to the transition region introduced (MK95)
downstream of the trailing edge of the flat-plate airfoil; the solutions in the two
regions exhibit similar combinations of ray-field and diffracted-field characteristics.
The transition region accounting for the airfoil surface curvature will be labelled
the ‘leading-edge transition region’, since it extends from the leading edge, while the
downstream transition region will be relabelled the ‘trailing-edge transition region’.

The leading-edge transition field is a scattered solution which serves to correct the
boundary condition on the airfoil surface, and decays to zero for large values of ψ,
where a purely geometric description is appropriate. We proceed by introducing the
scaled variable

η = k1/2ψ (5.2)

and attempting a scattered solution of the form (the subscript ltn signifying ‘leading-
edge transition’)

hltn =
1

k
Jl(φ, η)eikσl (r=φ,θ=0,2π) + O(α/k3/2), (5.3)

where the function Jl is O(α). Upon inserting (5.2) and (5.3) into the homogeneous
form of (2.3a), we find that to leading order Jl(φ, η) satisfies

2iw
∂Jl

∂φ
+
∂2Jl

∂η2
= 0. (5.4)

The scattered solution must cancel the normal velocity (5.1) on the airfoil surface.
In addition, it is advantageous to extend the boundary condition into the wake in
a manner which simplifies the analysis of the local trailing-edge and trailing-edge
transition fields (by obviating the need for a complementary solution to satisfy the
velocity jump condition across the wake). We write the airfoil boundary condition
and its extension in the following way:

∂Jl

∂η

∣∣∣∣
η=0±

= K±(φ), (5.5a)
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where

K±(φ) =


−i
Dl(0, 2π)V (0)

φ3/2

∫ φ

0

φ′
∂q

∂ψ
(φ′, 0)dφ′, 0 6 φ 6 2

−i
Dl(0, 2π)V (0)

φ3/2

∫ 2

0

φ′
∂q

∂ψ
(φ′, 0)dφ′, φ > 2.

(5.5b)

A solution for Jl(φ, η) may be obtained by applying a cosine transform in η to
(5.4), incorporating (5.5a), and requiring that Jl → 0 as η → ±∞. After solving the
resulting first-order differential equation in φ in terms of a definite integral, then
switching the order of integration and evaluating the integral defining the transform
inversion, we find that

Jl(φ, η) = −sgn(η)
eiπ/4

(2πw)1/2

∫ φ

0

eiwη2/2(φ−ξ) K±(ξ)

(φ− ξ)1/2
dξ. (5.6)

When (5.5b) is inserted explicitly into (5.6), the resulting integrals can be written
partially in terms of a complementary error function. The total solution (5.3) becomes
(for φ > 2)

hltn =
sgn(ψ)

k
eikσl (r=φ,θ=0,2π) e

3iπ/4V (0)Dl(0, 2π)

(2πw)1/2β∞

{∫ 2

0

eiwη2/2(φ−ξ)(ξn′(ξ)− n(ξ))

(φ− ξ)1/2ξ3/2
dξ

+23/2n′(2)

(
eiwη2/2(φ−2)(φ− 2)1/2

φ
− |η|e

−iπ/4(πw)1/2eiwη2/2φ

φ3/2
erfc

[
e−iπ/4w1/2|η|
(φ(φ− 2))1/2

])}
(5.7)

(For φ < 2, the terms multiplying n′(2) vanish, and the upper limit on the ξ-integral
changes from 2 to φ.) The large-r asymptotic expansion of (5.7), valid for all polar
angles θ, is given by

hltn ∼
1

k
Dltn(θ)

eikσl (r,θ)

r1/2
, (5.8a)

where

Dltn(θ) = sgn(ψ)
e3iπ/4V (0)Dl(0, 2π)

(2wπ)1/2β∞

{∫ 2

0

eikw(1−cos θ)ξ(ξn′(ξ)− n(ξ))

ξ3/2
dξ

+ 23/2n′(2)
(
e2ikw(1−cos θ) − π1/2e−iπ/4(2kw(1− cos θ))1/2erfc(e−iπ/4(2kw(1− cos θ))1/2)

)}
.

(5.8b)
The leading-edge transition field has been derived in this section for the specific case

of diffraction by the curved airfoil surface, but the general approach is more widely
applicable. Myers & Kerschen (1992) present a higher-order perturbation expansion
for the transition solution in the case of a stratified medium, and show how this
solution can be used to account for diffraction of a general source field by either a
curved surface or gradients of the acoustic medium.

6. Local trailing-edge region
To analyse the acoustic field in the local trailing-edge region, it is first necessary

to determine the location of the trailing edge in (φ, ψ)-space. To do so we use the
relation

ζ = z + F(z) + O(α2), (6.1)
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where ζ = φ+ iψ and z = x1 + iβ∞x2. Here F is the total O(α) perturbation potential
F , given in (2.10) (with the arbitrary constants chosen so that F vanishes at the
leading edge.) By inserting z = 2 in (2.10), we find that the trailing-edge location is
given by φ = 2± παg/β∞+O(α2), where αg is defined in (4.3) and the plus and minus
signs apply on the airfoil upper (ψ = 0+) and lower (ψ = 0−) surfaces, respectively.
The parameter παg/β∞ is one-half the non-dimensional circulation around the airfoil,
so that the lift coefficient CL = 2παg/β∞. To analyse trailing-edge effects, we define
trailing-edge-based coordinates for the outer region:

φt = φ− (2± παg/β∞), ψt = ψ, (6.2)

where the plus and minus signs apply for ψ greater than and less than zero, respec-
tively. The O(α) contribution to the trailing-edge location leads to an O(1) phase shift
that must be included when considering the scattering by the trailing edge.

The interaction of the convected disturbance with the trailing edge, which does
not contribute to the sound field, is discussed in MK95. Here, we consider only the
scattering of the leading-edge ray and transition fields by the trailing edge. To analyse
this scattering, local trailing-edge coordinates

Φt = kφt, Ψt = kψt (6.3)

are introduced. In the local trailing-edge region, mean-flow gradients are O(α) and
hence too small to enter the analysis. Thus, the modified potential Ht(Φt, ψt) satisfies
a constant-coefficient Helmholtz equation. Behind the airfoil (Φt > 0), the function
Ht must cancel the jump in pressure across Ψt = 0 of the leading-edge ray field and
the leading-edge transition field. Applying the pressure operator (2.7b) to (4.1) and
(5.3) and expanding in local trailing-edge coordinates, the combined jump in pressure
due to hl and hltn is found to be

p

∣∣∣∣ Ψt = 0+

Ψt = 0−
=

∆

k1/2
ei(w−δM2

∞)Φt , (6.4a)

where

∆ = (P+ − P−) + k1/2(P+ + P−)
eiπ/4iV (0)

(πw)1/2β∞

∫ 2

0

ξn′(ξ)− n(ξ)

(2− ξ)1/2ξ3/2
dξ, (6.4b)

P+ =
i√
2

(w − δ)Dl(0)eikσl (2+αgπ/β∞ ,0)e−iC+ , (6.4c)

P− =
i√
2

(w − δ)Dl(2π)eikσl (2−αgπ/β∞ ,2π)e−iC− , (6.4d)

C± = kδM2
∞(2± αgπ/β∞). (6.4e)

The constant P+ is the modified pressure (with the 1/k1/2 factored out) associated
with the leading-edge ray field, evaluated on the upper surface at the trailing edge;
P− is the analogous pressure on the lower surface. The quantity (P+−P−), which was
labelled ∆p in the flat-plate analysis, therefore represents the pressure jump associated
with the direct ray field hl . The part of (6.4b) proportional to (P+ + P−) represents
the jump in modified pressure for the leading-edge transition field hltn, and is O(αk1/2)
since the camber distribution function n(x) is O(α).

The modified potential Ht(Φt,Ψt) in the local trailing-edge region then satisfies
(3.46)–(3.48) of MK95, with the parameter ∆p replaced by the more general parameter
∆ and C± defined by (6.4e). The solution forHt(Φt,Ψt) presented in MK95 then applies
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here as well, and asymptotic matching with the trailing-edge ray field ht(rt, θt) for the
outer region determines the amplitude function

At(rt, θt) =
sgn(ψt)e

−iπ4∆eiC±

2 [πw(1− cos θt)]
1/2 (δ − w cos θt)r

1/2
t

, (6.5)

where (rt, θt) is the polar form of (φt, ψt). Since the trailing-edge ray field (4.5) is
multiplied by k−2, and we neglect terms smaller than O(1/k2, αk) in the outer region,
the O(αk1/2) term in the definition of ∆ (6.4b) can be neglected in (6.5). Thus, the
scattering of the leading-edge transition field hltn does not contribute to the trailing-
edge ray field at O(1) values of θt, to the desired order of accuracy. However, for
small values of θt the scattering of hltn by the trailing edge enters at O(α/k).

As in the flat-plate case, the trailing-edge amplitude function At(rt, θt) is singular
for small values of θt, indicating the need for a separate expansion in the trailing-edge
transition region. This region is analysed in the next section.

7. Trailing-edge transition region
Like the local trailing-edge solution, the trailing-edge transition solution serves

to cancel the jumps in pressure and transverse velocity across the wake (ψt = 0)
introduced by the leading-edge ray field and the leading-edge transition field. In the
local trailing-edge region, the abrupt change in boundary condition at the trailing
edge was incorporated in the analysis, but the cylindrical decay of the leading-edge
field was neglected. In contrast, the cylindrical decay of the leading-edge field must
be accounted for in the trailing-edge transition region, but the boundary condition
on the airfoil surface does not enter explicitly owing to the parabolic nature of the
wave operator in this thin layer.

To construct the trailing-edge transition solution for an airfoil having both camber
and angle of attack, we generalize the formulation of the trailing-edge transition
solution for the flat plate. The solution will be obtained in terms of the general
mean-flow perturbation speed expressed in trailing-edge coordinates, qt(φt, ψt). We
introduce the scaled coordinate

η = k1/2ψt (7.1)

and attempt a solution of the form (the subscript ttn signifying ‘trailing-edge transi-
tion’)

httn =
eikwφt

k3/2

[
Jt0(φt, η) + k1/2Jt1(φt, η) + O(α, 1/k, α2k)

]
, (7.2)

which retains the phase dependence on the fast variable kφt and an amplitude
dependence on the slow variable φt, but is also a function of the transverse coordinate
η whose scale is intermediate between the fast and slow variables. The function Jt0 is
O(1) while Jt1 is O(α). The simple phase function wφt is adequate in (7.2) because, to
O(α), qt is zero along the wake line ψt = 0.

By using (7.1) and (7.2) in the homogeneous form of (2.3a), and imposing continuity
of the total unsteady pressure and vertical velocity, we find at leading order that

2iw
∂Jt0

∂φt
+
∂2Jt0

∂η2
= 0, (7.3a)

e−iC+Jt0

∣∣∣∣
η=0+

− e−iC−Jt0

∣∣∣∣
η=0−

=
i(P+ − P−)

w − δ

(
2

2 + φt

)1/2

, (7.3b)
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e−iC+
∂Jt0

∂η

∣∣∣∣
η=0+

− e−iC−
∂Jt0

∂η

∣∣∣∣
η=0−

= 0. (7.3c)

To within a multiplicative constant in (7.3b), this system of equations is identical to
that for the flat-plate airfoil. We can thus immediately write the solution

Jt0 =
sgn(η)i(P+ − P−)eiC±

(w − δ)
√

2(2 + φt)1/2
eiwη2/2(2+φt)erfc

[
e−iπ/4w1/2|η|

(φt(2 + φt))1/2

]
. (7.4)

It is convenient to break the O(α/k) term Jt1 into two parts, one that cancels the
discontinuity in vertical velocity across the wake and has zero pressure jump, and
another whose vertical velocity across the wake is continuous but has the appropriate
jump in pressure. Only the first type of solution, which we label Jt1,a, was required
for the flat-plate airfoil. The governing equation for Jt1,a is inhomogeneous, with
the forcing term arising from the small-ψt expansion of the perturbation speed q
appearing in the operator L1 defined by (2.3d). We find that

2iw
∂Jt1,a

∂φt
+
∂2Jt1,a

∂η2
= −2wV (0)ηJt0

∂qt

∂ψt
(φt, 0), (7.5a)

e−iC+Jt1,a

∣∣∣∣
η=0+

− e−iC−Jt1,a

∣∣∣∣
η=0−

= 0, (7.5b)

e−iC+
∂Jt1,a

∂η

∣∣∣∣
η=0+

− e−iC−
∂Jt1,a

∂η

∣∣∣∣
η=0−

= −V (0)(P+ − P−)
√

2

w − δ

×
[

(2 + φt)
−1/2

∫ φt

0

∂qt

∂ψt
(φ′t, 0)dφ′t − (2 + φt)

−3/2

∫ φt

0

dφ′t

∫ φ′t

0

∂qt

∂ψt
(φ′′t , 0)dφ′′t

]
. (7.5c)

In the analysis for a flat-plate airfoil, the solution

Jt1,a = iV (0)ηJt0

∫ φt

0

∂qt

∂ψt
(φ′t, 0)dφ′t −

V (0)

w

∂Jt0

∂η

∫ φt

0

dφ′t

∫ φ′t

0

∂qt

∂ψt
(φ′′t , 0)dφ′′t (7.6)

was derived using expressions for ∂qt/∂ψt appropriate for a flat-plate airfoil. It can
be verified by direct substitution that (7.6) provides the appropriate generalization for
a cambered airfoil.

The second part of the O(α/k) term, Jt1,b, cancels the pressure jump across the wake
created by the leading-edge transition solution (5.7). The system of equations satisfied
by Jt1,b is

2iw
∂Jt1,b

∂φt
+
∂2Jt1,b

∂η2
= 0 (7.7a)

e−iC+Jt1,b

∣∣∣∣
η=0+

− e−iC−Jt1,b

∣∣∣∣
η=0−

= −eiπ/4V (0)(P+ + P−)

(w − δ)(πw)1/2β∞
bt(φt), (7.7b)

e−iC+
∂Jt1,b

∂η

∣∣∣∣
η=0+

− e−iC−
∂Jt1,b

∂η

∣∣∣∣
η=0−

= 0 (7.7c)

where

bt(φt) =

∫ 2

0

ξn′(ξ)− n(ξ)

(2 + φt − ξ)1/2ξ3/2
dξ +

23/2n′(2)φ
1/2
t

2 + φt
. (7.7d)



Influence of camber on sound generation by airfoils 235

The alternative form

bt(φt) =
2

2 + φt

∫ 2

0

(2 + φt − ξ)1/2ξ1/2n′′(ξ)dξ (7.7e)

is produced by integrating (7.7d) by parts.
A solution to (7.7) can be obtained using a cosine transform, in a manner similar

to that used to derive (5.6) in the leading-edge transition region. The result is

Jt1,b = −eiC±V (0)(P+ + P−)

(w − δ)23/2πβ∞

∫ φt

0

ηbt(ν)

(φt − ν)3/2
eiwη2/2(φt−ν)dν. (7.8)

The matching of the trailing-edge transition solution with the local trailing-edge
solution and the trailing-edge outer solution is similar to that in MK95. A uniformly
valid trailing-edge outer solution is obtained by forming an additive composite of the
trailing-edge outer and trailing-edge transition solutions. The common expansion is
obtained by expressing the transition solution httn to O(α/k) in outer variables and
expanding to O(α/k, 1/k2), or by expressing the outer ray solution (4.5) to O(1/k2)
in transition variables and expanding to O(α/k). The two expansions are identical,
verifying the asymptotic matching of these two regions. When expressed in transition
variables the common expansion is

hcom =
e−iπ/4(P+ − P−)eiC±eikwφt+iwη

2/2φtφ
1/2
t

(2πw)1/2(δ − w)k3/2η

[
1 +

ik1/2ηV (0)

φt

∫ φt

0

φ′t
∂qt

∂ψt
(φ′t, 0)dφ′t

]
.

(7.9)
The transition solution Jt1,b does not contribute to the common expansion. Like the
leading-edge transition solution Jl that is generated by surface-curvature effects, this
solution becomes negligibly small in the outer region.

The uniformly valid trailing-edge outer solution ht,u is the trailing-edge ray field
plus the transition field minus the common part:

ht,u = ht + httn − hcom. (7.10)

The large-r expansion of ht,u is

ht,u ∼
1

k3/2
Dt,u(θt)e

ikσt(rt,θt), (7.11a)

where

Dt,u(θt) =
eiC±

√
2(δ − w cos θt)

{
− sgn(ψt)i(P+ − P−)e−2ikw(1−cos θt)

× erfc
(
e−iπ/4(2kw(1− cos θt))

1/2
)
− 2k1/2V (0)(αi − n′(2))(P+ − P−)eiπ/4

(πw)1/2β∞

×
(

1− π1/2e−iπ/4(2kw(1− cos θt))
1/2e−2ikw(1−cos θt)erfc

(
e−iπ/4(2kw(1− cos θt))

1/2
))

+
k1/2sgn(ψt)V (0)(P+ + P−)

(2w)1/2πβ∞
(kw(1− cos θt))

1/2

∫ ∞
0

eikw(1−cos θt)ξbt(ξ)dξ

}
. (7.11b)

8. Total far-field solution
We now combine the solutions to the convected wave equation (2.3) into an

expression for the total acoustic field in the geometric far field, r � 1. The trailing-
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edge coordinates are expressed in terms of the leading-edge coordinates via the
far-field transformations

rt = r − (2 + sgn(ψ)αgπ/β∞) cos θ + O(1/r), (8.1a)

θt = θ − [1− sgn(ψ)] π + O(1/r), (8.1b)

where 0 6 θ 6 2π and the sgn(ψ) is required due to the different range of θt. The
total solution is the sum of the leading-edge ray field (4.1), the leading-edge transition
field (5.8), and the uniform trailing-edge solution (7.10). For r � 1 this sum may be
written

htotal ∼
exp

(
ik

[
wr +

V (θ)

β∞
((αg log 2r − α3c) sin θ − αg(θ − π) cos θ)

])
k3/2r1/2

×
{

exp

(
ikV (θ)

αi

β∞
sin θ

)[
Dl(θ) + k1/2Dltn(θ)

]
+exp

(
ik

(
−2w cos θ − sgn(ψ)π

αg

β∞
(w + V (θ)) cos θ − αi

β∞
V (θ) sin θ

))
Dt,u(θ)

}
,

(8.2)

where the directivities Dl , Dltn, and Dt,u are defined in (4.4), (5.8b), and (7.11b),
respectively, and the phase function V (θ) is given by (4.1d).

The far-field form of the modified pressure (2.7b) is

ptotal = −ik(δ − w cos θ)e−ikδM2
∞r cos θhtotal . (8.3)

The total far-field solutions just presented are given in terms of the potential-
streamline coordinates (r, θ). The relations between (r, θ) and physical coordinates
(rph,θph) (where rph is scaled by the airfoil semi-chord b) are

tan θ = β∞ tan θph (8.4a)

and

r = (1−M2
∞ sin2 θph)

1/2rph +
αg

β∞

(
log[2(1−M2

∞ sin2 θph)
1/2rph] sin θ − (θ − π) cos θ

)
+
αi − α3c

β∞
sin θ. (8.4b)

The O(α) terms in (8.4b) were erroneously omitted from the corresponding expression
(equation (4.2)) in MK95. However, the omitted terms provide only a phase shift
to the total solution (see (8.2)), and do not affect calculations of acoustic power or
pressure magnitude.

9. Results and discussion
9.1. Summary of solution structure

The following physical picture emerges from the analysis. For short-wavelength gusts,
the primary sound generation is concentrated in the local leading-edge region. In
this region the lengthscale of the mean-flow gradients is the same as the wavelength,
so that the gust is distorted ‘rapidly’. Sound is generated by interaction of the gust
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with the airfoil surface, by interaction of the gust with mean-flow gradients, and by
scattering effects due to sound propagation through the locally non-uniform mean
flow. In contrast, the lengthscale for the mean-flow gradients in the outer region is
the airfoil chord, so that the gust distortion is ‘slow’ and does not generate additional
sound. However, as the sound which was generated in the local leading-edge region
propagates through the outer region as a ray field, it undergoes O(1) phase shifts due
to the mean-flow variations. Two rays propagate along the upper and lower surfaces
of the airfoil, with some modifications due to the surface curvature, and are then
scattered by the trailing edge. The far-field sound is a combination of the direct
rays from the leading edge and the scattered rays from the trailing edge. At shallow
angles, the far field exhibits diffraction characteristics related to propagation along
the curved surfaces of the airfoil and to the shadow boundaries of the trailing edge.

Except at shallow angles, the effect of airfoil camber enters the far-field expression
(8.2) for the acoustic field in a simple manner, through the parameters αeff and αg .
The incidence angle αi of the airfoil also enters (8.2) through the parameters αeff and
αg , and appears separately in the phases of the leading- and trailing-edge fields as
well, influencing the constructive/destructive interference between these ray fields. An
additional camber parameter, α3, affects only the phase of the combined far field and
thus is much less important. Both αeff and αg are given in terms of integrals of the
camber distribution, which need be calculated only once to determine the far-field
sound at any location outside the transition region. The physical interpretation of
these generalized parameters is discussed below. The relative importance of αeff and
αg on the total sound field will be quantitatively explored in §9.2.2.

The parameter αeff is related to the mean flow in the local leading-edge region.
In this region, the mean flow consists of a uniform flow parallel to the edge, plus a
disturbance flow around the edge from the lower surface to the upper. The parameter
αeff is a measure of the relative amplitude of this disturbance flow. Physically, αeff is
the incidence angle which would be required for a flat-plate airfoil in order to produce
the same amplitude disturbance flow around the leading edge. Thus, αeff = αi−α1c can
be thought of as an ‘effective leading-edge incidence angle’ for the cambered airfoil.
The camber term α1c (defined by (3.3b)) is zero for airfoils which are symmetric about
the midchord, such as a circular arc. For most airfoils the maximum in the camber
distribution occurs before the midchord, and α1c is positive. Positive α1c implies a
camber-induced disturbance flow around the leading edge from the upper surface to
the lower (assuming the airfoil to be concave down), the opposite direction to that
induced by a positive incidence angle. Typically, then, airfoil camber and incidence
angle oppose one another in the determination of αeff and hence in the amplitude of
the far-field sound.

Because the geometry and flow field in the local leading-edge region are the same as
those for the flat-plate airfoil once the incidence angle is replaced by αeff , the sound-
generation mechanisms in the general case are identical to those for the flat plate.
The weighting of the source terms related to non-uniform mean-flow effects merely
changes from αik

1/2 to αeff k
1/2. The sound-generation mechanisms are contained in

the leading-edge potentials H1, H2, and H3 of MK95, which are represented in the
far field by the directivity patterns D1(θ), D2(θ), and D3(θ) in (3.4). The function H1 is
generated by sources on the airfoil surface which arise from the change in boundary
condition due to distortion of the vortical gust by the mean-flow gradients. H2 is
due to the volume sources arising from the interaction of the vortical velocity with
the mean-flow gradients. Distortion of the entropy disturbance also contributes to
H2. The function H3 represents additional sound generated by local scattering of the
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uniform-medium sound field (represented by H0) by local variations in the mean-flow
velocity and speed of sound.

The parameter αg = αi + α2c arises in the expression for the generalized geometric-
acoustic phases. We refer to αg as the ‘total loading’ parameter, since the airfoil
mean lift coefficient is CL = 2παg/β∞. The typical situation which generates opposing
influences of camber and incidence angle for αeff produces complementary influences
for αg . The camber contribution to the total loading, α2c, can be seen from (4.3c) to be
always positive (for the airfoil concave down), thereby producing the same effect as a
positive incidence angle. The airfoil total loading leads to a logarithmic contribution
to the far-field phase, as can be seen from (8.2) and (8.4). The total loading also has
a major impact on the scattered field from the trailing edge, as discussed next.

For a flat-plate airfoil at zero incidence angle, the leading-edge sound field is
antisymmetric in ψ, and the pressure fluctuations that impinge on the upper and
lower surfaces of the trailing edge are of equal amplitude but opposite phase. When
the effects of airfoil camber and incidence angle are included, the radiation impinging
on the upper and lower surfaces of the trailing edge is in general different in amplitude
(Dl(2π) 6= Dl(0)), and has also suffered different O(1) phase shifts in propagating from
the leading to the trailing edge. For a two-dimensional gust (A3 = k3 = 0 in (2.1a)),
the leading-edge rays which impinge on the upper and lower surfaces of the trailing
edge have the phases

2k
M∞

1 +M∞
∓ kαg

π

β∞

M2
∞

(1 +M∞)2

[
1− 1

2
(γ − 1)M∞

]
, (9.1)

where account has been taken of the additional phase factor that was extracted from
the modified potential h in the definition (2.2) (see also Kerschen & Myers 1987). The
phase shifts on the upper and lower surfaces due to the non-uniform mean-flow effects
are seen to be of equal amplitude but opposite sign, and depend on the airfoil camber
and incidence angle only through the total loading parameter αg . These phase shifts
may decrease the discontinuity ∆ of the leading-edge pressure field at the trailing
edge, in which case the airfoil mean loading weakens the scattered field from the
trailing edge by an O(1) amount.

At shallow angles (θ = O(k1/2)) the geometric acoustic fields give way to transition
solutions, which maintain the rapidly varying phase of geometric acoustics but acquire
a dependence on the intermediate variable k1/2θ. Part of the trailing-edge transition
solution httn arises due to diffraction of the leading-edge field by the semi-infinite wake
sheet, which is geometrically a plane in (φ, ψ)-space. This part of the solution also
occurs for a flat-plate airfoil, and can be obtained from the flat-plate result simply by
replacing the trailing-edge pressure jump of the leading-edge geometric field by the
generalized pressure jump P+ − P−.

The remainder of the field at shallow angles is due specifically to the curvature
of the airfoil surface. The solution hltn describes the acoustic field near the curved
surface: above the airfoil it can be thought of as a boundary-layer extending slightly
into the shadow region produced by the convex surface, while below the airfoil an
enhancement of the acoustic field related to the whispering-gallery phenomenon is
found. The boundary-layer approach is valid because the radius of curvature of
the airfoil surface is large relative to the propagation distance (the airfoil chord.)
The dependence upon airfoil camber in the transition solutions is more complicated
than in the solutions previously discussed. Both hltn and httn contain integrals over
distributions of sources along the airfoil chord. The source strength is related to the
local radius of curvature of the airfoil, as can be seen in (5.8) and (7.7d). To obtain
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Figure 3. 10–33 airfoil, which attain maximum camber of 10% at 33% chord.

the far-field sound at shallow angles, it is necessary to calculate the integrals over
airfoil source distributions for each receiver angle of interest.

9.2. Numerical results

Numerical calculations were performed to assess the influences of the various
parameters characterizing the mean flow and the convected disturbance. Owing to
the large dimension of the parameter space, several parameters are eliminated from
consideration here. Only two-dimensional gusts are considered (A3 = k3 = 0) and
the gusts are purely vortical except where a non-zero value of the entropy amplitude
B is specified. Fixing |A| = 1, the gust is then described by its orientation angle θg
(the angle between the gust wavevector and the mean velocity far upstream) and the
dimensionless frequency k.

The camber distribution function was varied by prescribing it in the form of the
quartic polynomial

n(x) = a0(1 + a1x+ a2x
2)(1− (1− x)2), 0 6 x 6 2, (9.2)

and varying the coefficients a0, a1, and a2. The quartic polynomial representation
provides considerable flexibility in specifying the airfoil shape, and also allows the
integrals in the far-field forms of the transition solutions to be written in terms
of complementary error functions. Two specific camber distribution functions will
primarily be considered in this paper. The first, which results from the choices
a1 = −0.61 and a2 = 0.1 in (9.2), attains its maximum at 33% chord and has an
inflection point at 70% chord. It will be designated as the ‘X-33’ airfoil, where ‘X’
is the maximum percent camber (normalized by airfoil chord), which determines the
final coefficient a0. A 10-33 airfoil is shown in figure 3. The second type of airfoil
considered is the circular arc, whose camber distribution function results from setting
a1 = a2 = 0 in (9.2). The two airfoil shapes were chosen because the maxima in their
camber distribution functions occur in distinct locations, resulting in significantly
different values (between the two shapes) for both of the loading parameters αeff and
αg .

Details of the acoustic field will be illustrated through plots of pressure directivity.

The pressure directivity which we plot is the far-field value of |p|r1/2
ph as a function of

θph (see figure 4a), where p is the modified pressure defined by (8.3) and (2.7), and
(rph, θph) are polar coordinates in physical space. The far-field relations between the
Prandtl–Glauert potential-streamline coordinates used throughout the analysis and
the physical coordinates are given in (8.4).

The acoustic field will also be quantified through computations of total acoustic
power. The formula for acoustic power is equation (4.4) of MK95, which can be
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Figure 4. Far-field pressure directivity pattern. (a) Flat-plate airfoil, αi = 0, M∞ = 0.5, k = 8,
θg = 60◦. (b) 3-33 airfoil, αi = 0, M∞ = 0.5, k = 8, θg = 60◦. (c) 6-33 airfoil, αi = 0,M∞ = 0.5, k = 8,
θg = 60◦.

derived from Morfey’s (1971) expression for the power of a sound field in a moving
medium. We repeat the formula here for convenience:

Normalized power =
Ave. power/span

1
2
ρ∞U3

∞bε
2

= k2w

∫ 2π

0

hh∗(β∞ cos2 θ + sin2 θ)(β2
∞ sin2 θ + cos2 θ)1/2rdθ, (9.3)

where b is the airfoil semichord, ε the dimensionless gust amplitude, h is the far-field
potential given in (8.2), and h∗ denotes the complex conjugate.

9.2.1. Isolated effect of camber

The effect of airfoil camber is first examined by considering the interaction of a
vortical disturbance with an airfoil having three different amounts of camber. The
Mach number is 0.5, θg = 60◦, k = 8, and αi = 0. Figure 4(a) is a plot of the pressure
directivity for zero camber. As is to be expected in the absence of mean loading,
the pressure is perfectly antisymmetric and there is zero downstream radiation. In
figure 4(b) the airfoil is the 3-33 type pictured in figure 3. Even though the maximum
camber is just 3%, the pattern is quite different from that for the unloaded flat plate.
Though there is still little radiation directly downstream, there is much more radiation
below the airfoil than above it. When the maximum camber is raised to 6%, as for
the 6-33 airfoil of figure 4(c), the difference between the fields above and below the
airfoil is extreme. In figure 4(c) there is also a noticeable amount of radiation directly
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downstream. The sequence of patterns in figures 4(a)–4(c) illustrates that even small
amounts of airfoil camber can have a pronounced effect on the radiated sound field.

Our directivity patterns generally have a discontinuity directly upstream of the
airfoil (across θph = π). This is a consequence of our high-frequency approximation,
which consists of a primary field from the leading edge and a secondary field from
the trailing edge. The primary field is discontinuous downstream of the airfoil. This
discontinuity is removed by the secondary scattered field from the trailing edge, which
then introduces a weaker discontinuity in the upstream direction. This upstream
discontinuity would be eliminated by a tertiary scattered field from the leading edge,
but the tertiary field has not been considered because it is of higher order than the
terms which have been retained in our analysis.

The influence of surface curvature on acoustic propagation near the airfoil is, as
noted in §9.1, accounted for in the scattered field hltn. As a special case which illustrates
curved surface effects, consider flow past a curved rigid surface having the same shape
as the airfoil and its mean wake. The interaction of the gust with the leading edge
generates the field hl as before, but there is no scattered field from the trailing edge
(due to the presence of the rigid surface beyond x = 2). One then needs a transition
field to account for diffraction by the curved surface. It turns out that, for the special
case αi = n′(2), the extension of the boundary condition for φ > 2 which was utilized
in (5.5b) is exactly that required to eliminate the transverse velocity through the wake
surface. The combination hl +hltn then provides the complete solution for the acoustic
field in this case.

As an example of this special case, consider the 8-32 airfoil generated by setting
a0 = 0.288, a1 = −0.60 and a2 = 0.05. This airfoil is similar in shape to the X-33, but
its maximum camber occurs at 32% chord and its trailing-edge slope n′(2) is zero.
The acoustic field generated by interaction with a gust convected at Mach number
0.6, with k = 8 and θg = 45◦, is illustrated in figure 5. With αi set to zero, the effective
leading-edge incidence angle is αeff = −4.13◦, producing the leading edge directivity
Dl(θ) plotted as a dashed line in figure 5. Note that, even for this relatively small value
of αeff , the leading-edge directivity differs markedly from the cos 1

2
θ pattern which is

obtained for αeff = 0. The directivity for the combined field hl + hltn is plotted as a
solid line in figure 5. The transition solution decreases the pressure field at shallow
positive downstream angles, due to shadow effects associated with propagation along
the convex upper surface of the airfoil. A peak in the field and a damped oscillatory
pattern is seen at somewhat larger positive angles. The transition solution increases
the pressure field at shallow negative downstream angles, due to whispering-gallery
effects associated with propagation along the concave lower surface of the airfoil. A
mild decrease in the field and a damped oscillatory pattern is seen at somewhat larger
negative angles.

9.2.2. Combined effect of camber and incidence angle

In this subsection we explore combined effects of airfoil camber and incidence angle.
We first focus on the total sound power generated by the airfoil–gust interaction.
Earlier models of mean loading effects on gust interaction noise (Ffowcs Williams
& Hawkings 1969b; Goldstein, Rosenbaum & Albers 1974; Mani 1974) utilized the
Ffowcs Williams & Hawkings acoustic analogy (Ffowcs Williams & Hawkings 1969a),
and modelled the mean flow by a row of two-dimensional point vortices superimposed
on a uniform flow. Hence, the only mean-flow parameter which entered these models
was the vortex strength, or equivalently the airfoil lift coefficient. We accordingly
first present calculations of the sound power as a function of lift coefficient for
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Figure 5. Far-field pressure directivity patterns illustrating leading-edge transition field effects.
Dashed line is Dl(θ) for an 8-32 airfoil at αi = 0, M∞ = 0.6, k = 8, and θg = 45◦. Solid line is
Dl(θ) + Dltn(θ), for a semi-infinite surface having the same shape as the airfoil and its mean wake.

four different airfoils. The first airfoil is a flat plate at variable incidence angle. The
second is an X-33 airfoil at zero incidence angle (i.e. the airfoil having the shape
shown in figure 3) but with variable maximum camber. The third airfoil is a 7%
camber circular arc at variable incidence angle, and the fourth is a 7-33 airfoil also
at variable incidence angle. The sound power levels produced when M∞ = 0.6, k = 7,
and θg = 45◦ are plotted as a function of lift coefficient in figure 6. It is clear that the
trends are highly variable: the flat plate shows a sharp increase in power with total
loading, the 7-33 airfoil a sharp decrease, and the circular arc and X-33 airfoil little
change.

Since our high-frequency theory shows that the sound generation is concentrated
in the local leading-edge region, where αeff is the relevant mean-loading parameter,
we investigated the utility of replotting the sound power data of figure 6 against
αeff /β∞. The result is shown in figure 7(a). The curves are nearly indistinguishable,
demonstrating that αeff is an extremely useful correlating parameter for mean-loading
effects, at least under the parametric conditions leading to figures 6 and 7(a).

In figure 6, the very different results for the different airfoils can be understood in
terms of the relationship between αeff and the lift coefficient. For the flat plate CL/2π
is equal to αeff /β∞, and the rapid increase in power with lift coefficient matches the
rapid increase in power with positive αeff /β∞. For the circular arc and 7-33 airfoils,
a negative incidence angle is required in order to achieve a zero or slightly positive
lift coefficient. When the negative incidence angle is combined with the value α1c = 0
for the circular arc and α1c = 0.051 for the 7-33 airfoil, αeff is slightly negative for the
circular arc and more negative for the 7-33 airfoil. From figure 7(a), then, one can
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Figure 6. Radiated acoustic power versus lift coefficent for four airfoils: a flat plate at variable
incidence angle (solid line), variable-camber X-33 airfoil at zero incidence angle (small and large
dashes), 7% camber circular arc at variable incidence angle (small dashes), and 7-33 airfoil at
variable incidence angle (dashes and dots). M∞ = 0.6, k = 7, θg = 45◦.

see that in figure 6 the circular arc airfoil is in a range where the power is relatively
insensitive to changes in αeff and the 7-33 airfoil is in a range (off the graph to the left)
where the power decreases relatively rapidly as αeff increases. Finally, for the X-33
airfoil at zero incidence angle, increasing the lift coefficient by raising the camber
moved αeff from zero to negative values, in a range where the power is insensitive to
changes in αeff . Thus in figure 6 the power for the X-33 airfoil varied only slightly
with lift coefficient.

To evaluate the degree of correlation of the acoustic power with αeff for other
parameter values, we performed similar computations at a reduced frequency k = 2,
with the Mach number and gust angle remaining at 0.6 and 45◦, respectively. Since
variations between power curves plotted against αeff are primarily due to trailing-edge
effects (the transition regions affecting the intensity only at shallow angles), one might
expect a poorer correlation at lower reduced frequencies, where the trailing-edge
radiation is stronger. Although the collapse of the results in figure 7(b) is not quite
as good as in figure 7(a), the degree of correlation provided by the parameter αeff is
surprisingly high, when one considers that the large parameter k is only 2.

The high degree of correlation holds for a gust orientation angle of θg = 0 as well,
as is evident in figure 7(c). The near symmetry across αeff = 0 exhibited in figure 7(c)
is sensible on physical grounds: for θg = 0 the gust velocity oscillates vertically,
and a flat plate at an incidence angle α should produce the same power as a flat
plate at incidence angle −α. Likewise, when the velocity fluctuations are vertical a
‘concave-down’ airfoil should generate the same power as the corresponding ‘concave-
up’ airfoil. Symmetry across αeff = 0 cannot be expected when incidence angle and
camber are combined, since the combination of incidence angle and camber can
be manipulated to alternately yield the values αeff and −αeff without symmetrically
inverting the geometry. Nevertheless, a high degree of symmetry exists in figure 7(c)
for the combined incidence angle and camber cases.
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Figure 7. Radiated acoustic power versus αeff /β∞ for the four airfoils of figure 6. M∞ = 0.6.
(a) k = 7, θg = 45◦; (b) k = 2, θg = 45◦; (c) k = 7, θg = 0; (d) k = 7, θg = −30◦.

Normalized power calculated for a final gust angle, θg = −30◦, is plotted in
figure 7(d). Once again the correlation is seen to be very good. In contrast to the
curves for positive values of θg , for negative θg the power decreases with increasing
αeff over most of the αeff values of interest. In fact, by the symmetry arguments
discussed in the previous paragraph, the curves for negative values of θg can be
shown to be near mirror images across αeff = 0 of the curves existing for positive
θg . A practical implication of figure 7(a–d) is that the sound power can increase,
decrease, or remain effectively unchanged with increased leading edge incidence angle
αeff . It is therefore important that detailed characteristics of the gust spectrum be
considered when assessing the influence of mean loading. It is interesting to note
that fan–viscous-wake interactions typically involve positive gust angles, often on the
order of 45◦.

While αeff is essentially the only important mean-loading parameter for predicting
the integrated quantity of total acoustic power, the same is not true for determining
local quantities such as acoustic pressure. We now consider three cases for which
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αeff is zero and the normalized power is approximately 0.014. The Mach number is
0.5, the reduced frequency 8.0, and the gust angle 60◦. The airfoil in the first case is
simply a flat plate, and the pressure directivity pattern is given in figure 4(a). As noted
previously, this pattern exhibits antisymmetry across the airfoil and no downstream
radiation. The second case, shown in figure 8(a), is a 6-33 airfoil at an angle of attack
of 2.5◦. The directivity pattern of figure 8(a) begins to exhibit asymmetry from top to
bottom and some radiation in the downstream direction. The downstream radiation
arises because the O(αgk) phase shifts have begun to produce a non-zero average
pressure across the trailing edge, which continues in the downstream direction. The
asymmetry and downstream radiation are accentuated when the incidence angle is
increased to 5◦ and the maximum camber to 12%, as shown in figure 8(b). The angle
of maximum radiation in the upper half-plane for figure 4(a) resides near a local
minimum in figure 8(b). The total number of lobes is the same in each of the patterns
in 4(a), 8(a), and 8(b), but the number of lobes in the upper half-plane relative to
that in the lower increases with increasing loading.

In figure 9, the directivity pattern is presented for the same case as in figure 8(b),
except that the Mach number has been raised from 0.5 to 0.75. The increase in Mach
number has led to a number of significant changes in the directivity pattern. First,
the phase distortion of the leading-edge ray field due to mean-loading effects has
increased (see (9.1)), so that the rays impinging on the upper and lower surfaces of
the trailing edge have been shifted nearly into phase, weakening the scattered field
from the trailing edge. Thus, the modulation of the directivity pattern is smaller in
amplitude than in figure 8(b). In fact, for the conditions of figure 9 the scattering
of the leading-edge transition field hltn by the trailing edge is nearly as important as
the scattering of the leading-edge ray field hl . The sum of the leading-edge transition
field and its scattered field by the trailing edge is plotted as a dashed line in figure 9.
This sum has two strong lobes, one about 25◦ above the wake and one 25◦ below
it. The top lobe adds out of phase with the cos 1

2
θ leading-edge ray pattern and the

bottom lobe adds in phase, producing a noticeable local minimum and maximum,
respectively, in the overall pattern.

It is interesting to note that the modulation of the directivity pattern in figure 9
is more rapid in the upper half-plane than in the lower, and that in both half-planes
the modulation becomes much more rapid as the upstream direction is approached.
These features can be explained by examining the influence of the mean loading on
the relative phases of the leading-edge and trailing-edge ray fields. In the far field, the
difference in phase is given by

σl − σt = 2w cos θ + 2
αi

β∞
V (θ) sin θ ± π αg

β∞
(V (θ) + w) cos θ, (9.4)

where the ± sign applies in the upper and lower half-planes, respectively, and V (θ) is
defined in (4.1d). It is the variation of the relative phase with angle, coupled with any
angular variations in the phases of the leading- and trailing-edge directivity functions,
that produces the modulation in the far-field pattern.

Only the first term of (9.4) is present when there is no mean loading; this term
arises due to differences in the distance to a far-field point, and is responsible for
the modulation seen in figure 4(a). For the conditions of figures 8 and 9, the third
term of (9.4), which is proportional to the total-loading parameter αg , is the dominant
mean-loading effect. This term adds to the variation of the relative phase in the upper
half-plane, producing a more rapid modulation, while in the lower half-plane the first
and third terms act in opposition, decreasing the rate of modulation of the far-field



Influence of camber on sound generation by airfoils 247

0.12

0.09

0.06

0.03

0.03

0.06

0.09

0.12

0.12 0.09 0.06 0.03 0.03 0.06 0.09 0.12

(a)

0.06

0.06

0.09

0.12

0.12 0.09 0.06 0.06 0.09 0.12

(b)

0.03 0.03

0.03

0.03

0.12

0.09

Figure 8. Far-field pressure directivity pattern for (a) a 6-33 airfoil at an incidence angle of 2.5◦,
(b) a 12-33 airfoil at an incidence angle of 5◦. M∞ = 0.5, k = 8, θg = 60◦.
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Figure 9. Far-field pressure directivity patterns for a 12-33 airfoil at an incidence angle of 5◦.
M∞ = 0.75, k = 8, θg = 60◦ Total field is denoted by solid line; leading-edge transition field plus its
scattered field denoted by dashed line.

pattern. Physically, the perturbation flow speed q associated with the mean loading
is positive above the airfoil, resulting in a larger convection speed which an acoustic
wave travelling upstream from the trailing edge must oppose in order to interfere
with the wave from the leading edge. In contrast, q is negative below the airfoil,
decreasing the convection speed and thus reducing the modulation of the directivity
pattern.

The increased modulation in the upper half-plane relative to that in the lower is
a mean-loading effect that also occurs at modest Mach numbers, as can be seen
from figure 8. In contrast, the very rapid modulation in the upstream direction is a
mean-loading effect that becomes important only at high subsonic Mach numbers.
This effect is caused by the second term of V (θ), which (for k3 = 0) is proportional
to M3

∞β
−4
∞ (1−M∞ cos θ)2. Thus, at high subsonic Mach numbers, V (θ) takes on large

values in the upstream direction, causing the rapid modulation of the upstream field
seen in figure 9. Physically, this strong influence of mean loading on the upstream
modulation arises because acoustic waves propagating upstream in a nearly sonic
flow travel quite slowly, increasing the time over which the mean-flow perturbation
can act to modify the phase of the waves.

9.2.3. Dependence of the sound field upon gust characteristics

In this subsection we consider the dependence of the sound field on gust char-
acteristics. Even with the restriction to two-dimensional gusts, it is impractical to
fully explore the behaviour of the pressure directivity fields throughout the parameter
space of Mach number, frequency, airfoil, and gust characteristics. In the previous
subsection, we found that the influence of camber and incidence angle on the total
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acoustic power is well correlated by the effective leading-edge incidence angle, αeff .
This is also the only mean-loading parameter which enters the directivity pattern of
the leading-edge ray field. Since the trailing-edge and transition fields serve only to
modify the basic directivity pattern of the leading-edge field, in this subsection we
examine the influence of gust characteristics on the leading-edge ray field.

In examining the leading-edge ray field in isolation, it is advantageous to introduce
a modified acoustic power and pressure which absorb some of the dependence on
frequency and Mach number. We define

Leading-edge power = Normalized power

(
k

M∞

)
. (9.5)

The analogous leading-edge pressure is defined as k1/2|p|r1/2
ph . When αeff is zero, the

leading-edge sound field is a pole of 3
2
-order with pressure directivity cos 1

2
θ, inter-

mediate between a monopole and dipole. The acoustic power for a two-dimensional
pole of 3

2
-order scales as M4

∞, and is inversely proportional to frequency, so that the
leading edge power and pressure for αeff = 0 depend only on the gust angle θg . For
non-zero values of αeff , leading-edge power and pressure are a function of αeff k

1/2

and θg in the low-Mach-number limit, while additional dependence on M∞ is present
at O(1) Mach numbers. Results will be presented for positive values of αeff . The
corresponding results for negative values of αeff can be obtained by reversing the sign
of θg .

In figure 10, the leading-edge power generated by interaction with a vortic-
ity gust is plotted as a function of gust angle, for values of the mean loading
parameter αeff k

1/2 equal to 0, 0.1, 0.2, and 0.3. The Mach number is 0.6. For zero
αeff , noise is generated only by the airfoil surface blocking the normal component of
gust velocity, and the power curve has the simple cos2 θg dependence (cos θg being the
normal velocity component for the vorticity gust). Modest amounts of mean loading
increase the sound power for positive gust angles and decrease it for negative θg . As
the mean loading is increased, the maximum of the curve rises rapidly and its location
shifts to positive values of θg .

The leading-edge pressure directivities for the case of M∞ = 0.6, θg = 45◦, and
varying amounts of mean loading are shown in figure 11. The increase in pressure
magnitude as the loading parameter is raised from 0 to 0.3 reflects the increase in
power seen in figure 10. While no radical change in shape is observed with increasing
mean loading, a significant increase in the amount of upstream radiation can be
observed. Leading-edge directivities were also generated for gust orientation angles
of −30◦, 0, and 30◦, for M∞ = 0.6 and αeff k

1/2 = 0.2. The plots (figure 12) show
that the amount of radiation above the airfoil relative to the amount below increases
substantially as the orientation angle is decreased.

Figure 13(a) illustrates the influence of Mach number on the generated sound power.
The leading-edge power is plotted as a function of gust angle, with αeff k

1/2 = 0.2, for
four Mach numbers in the range 0 to 0.75. The curves for M∞ = 0 and 0.25 verify
the independence of leading-edge power upon Mach number for small M∞. As the
Mach number increases beyond 0.5, the leading-edge power rapidly increases. The
gust angle of maximum power stays relatively constant, however, at around 30◦.

The dependence upon compressibility illustrated in figure 13(a) can be further
correlated, in the following way. It is well known that airfoil steady loading increases
with Mach number, and that within the framework of thin-airfoil theory compress-
ibility effects can be accounted for by the introduction of a Prandtl–Glauert factor
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Figure 10. Leading-edge power versus gust orientation angle, for αeff k
1/2 = 0 (solid line), 0.1

(small and large dashes), 0.2 (small dashes), and 0.3 (dashes and dots). M∞ = 0.6.

1/β∞ into the lift coefficient. To determine if a similar approach would capture at
least the major influences of compressibility on unsteady airfoil–gust interactions, we
considered the modified leading-edge loading parameter αeff k

1/2/β∞. In figure 13(b),
the leading-edge power is plotted for the same four Mach numbers as in figure 13(a),
but with the leading-edge loading held constant through the parameter αeff k

1/2/β∞
rather than αeff k

1/2. It can be seen that the inclusion of the Prandtl–Glauert factor
has significantly reduced the variations between the different curves.

We next consider the influence of mean loading on the sound power generated
by entropy gusts. Far upstream, a purely entropic gust has density fluctuations, but
no velocity or pressure fluctuations. The entropy gust generates sound only by its
interaction with the mean-flow gradients. Since the gust modifies the density of the
fluid particle, in passing through the mean pressure gradient an under-acceleration or
over-acceleration of the fluid particle occurs, resulting in velocity fluctuations. These
velocity fluctuations then generate sound in two ways: through unsteady interactions
with rigid surfaces, and through gradients of the Reynolds stress components which
contain products of the mean and fluctuating velocities.

In figure 13(c) we plot the leading-edge power produced by the interaction of a
purely entropic gust (A = 0, B = 1 in (2.1)) with an airfoil having three different
values of mean loading. The Mach number is 0.6. For all values of αeff k

1/2, the power
is maximum at θg = 0, and the curves are symmmetric about this angle of maximum
power. The amount of acoustic power is seen to be low for small values of αeff ; in
fact, it can be shown that the acoustic power for a purely entropic gust is O(α2

eff )
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Figure 11. Far-field directivity pattern for leading-edge pressure. M∞ = 0.6, θg = 45◦. αeff k
1/2 = 0

(solid line), 0.1 (small dashes), 0.2 (small and large dashes), and 0.3 (dashes and dots).
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Figure 12. Far-field directivity pattern for leading-edge pressure. M∞ = 0.6, αeff k
1/2 = 0.2,

θg = −30◦ (solid line), 0◦ (small dashes), and 30◦ (small and large dashes).
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Figure 13. Leading-edge power versus gust orientation angle, for (a) Mach numbers of 0 (solid
line), 0.25 (small and large dashes), 0.5 (small dashes), and 0.25 (dashes and dots). αeff k

1/2 = 0.2, (b)

same as in (a) but with αeff k
1/2/β∞ = 0.2, (c) a purely entropic gust, with αeff k

1/2 = 0.1 (solid line),
0.2 (small and large dashes), and 0.3 (small dashes). M∞ = 0.6.

as αeff → 0. For a purely entropic gust, the O(αeff k
1/2) fluctuating Reynolds stress

(contained in H2) is the only sound-generating mechanism which enters our analysis;
the interaction of the velocity fluctuation with the leading edge is only O(αeff ) (see
(2.6)) and therefore too small to be retained in our approximation. No sound is
generated by an entropy gust interacting with an unloaded leading edge. In contrast,
velocity fluctuations are present for a vortical gust even in the absence of mean-flow
acceleration, and the blocking of these fluctuations by the airfoil surface generates a
sound field even when αeff = 0 (figure 10).

Leading-edge pressure directivities for the case of an entropy gust and a Mach
number of 0.6 are plotted in figure 14. When the gust orientation angle is θg = 0,
nearly all of the radiation is downstream. A progressive shift toward increasing
upstream radiation is seen as the orientation angle is raised to 30◦ and 60◦. The
mean-loading parameter in figure 14 is αeff k

1/2 = 0.2, but since the leading-edge
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Figure 14. Far-field directivity pattern for leading-edge pressure. Entropy gust, with M∞ = 0.6,
αeff k

1/2 = 0.2, θg = 0◦ (solid line), 30◦ (small dashes), and 60◦ (small and large dashes).

pressure is proportional to αeff k
1/2 for a purely entropic gust, the directivity shape

is identical for all values of αeff k
1/2 (satisfying αeff k

1/2 � 1). Also, the leading-edge
pressure directivity patterns for negative gust angles are the mirror images (across
x2 = 0) of those for positive θg .

To observe the effect of Mach number on the sound generated by entropy gusts,
results for M∞ = 0.0, 0.25, 0.5, and 0.75 are presented in figure 15(a). The leading-edge
loading is αeff k

1/2 = 0.2. The power is seen to increase significantly with increasing
Mach number, even more than for a vorticity gust (figure 13(a)). To determine
whether the increase in leading-edge power with Mach number could be captured by
the Prandtl–Glauert factor 1/β∞ amplifying the mean lift coefficient, we computed
the acoustic power for the same four Mach numbers of figure 15(a), but with the
modified loading parameter αeff k

1/2/β∞ held constant at 0.2. The results (figure 15(b))
show that, as with vorticity gusts, inserting the factor 1/β∞ into the mean loading
parameter provides a reasonable collapse of compressibility effects.

For relatively high subsonic Mach numbers, the pressure directivities for both the
isolated vorticity and entropy gusts begin to show noticeable lobing. In figure 16
the directivities are plotted for the case M∞ = 0.75, θg = 0, and αeff k

1/2 = 0.2. The
lobing is due in part to the interactions between the components of the fluctuating
Reynolds stress, some of which become important at high Mach numbers due to
their β−6

∞ dependence (MK95). The emerging acoustic-propagation effects, which are
proportional to β−8

∞ (MK95), contribute to further lobing for the vorticity gust. It is
interesting to note that, while the vorticity and entropy gusts of figure 16 radiate almost
the same maximum pressure, these maxima occur in nearly orthogonal directions.

A comparison of sound-power levels for isolated vorticity and entropy gusts,
especially those plotted in figures 13(b) and 15(b), shows that the maximum power
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Figure 15. Leading-edge power versus gust orientation angle for a purely entropic gust, with
M∞ = 0 (solid line), 0.25 (small and large dashes), and 0.5 (small dashes), and 0.75 (dashes and
dots). (a) αeff k

1/2 = 0.2, (b) αeff k
1/2/β∞ = 0.2.
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Figure 16. Far-field directivity pattern for leading-edge pressure, for a purely entropic gust (solid
line) and a purely vortical gust (small and large dashes). M∞ = 0.75, αeff k

1/2 = 0.2, θg = 0.

levels for vorticity gusts generally exceed those for entropy gusts when αeff k
1/2/β∞

is less than 0.3, while the maximum power levels for entropy gusts are larger when
αeff k

1/2/β∞ exceeds 0.3. We next briefly consider the case where vorticity and entropy
gusts are present simultaneously. In general, the harmonic vorticity and entropy
disturbances in (2.1) will not be in phase, so we allow the entropy amplitude to be
complex in order to accomodate a phase shift.

Our first illustration of combined-gust effects considers five gusts with the following
characteristics: (i) purely entropic, (ii) entropy amplitude twice the vorticity amplitude,
(iii) vorticity and entropy amplitudes equal, (iv) vorticity amplitude twice the entropy
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Figure 17. Leading-edge power versus gust orientation angle for vorticity and entropy gusts,
combined in phase. Relative amplitude combinations are: |A| = 0, B = 1 (solid line); |A| = 0.33,
B = 0.67 (dotted line); |A| = 0.5, B = 0.5 (dashed line); |A| = 0.67, B = 0.33 (dashed-dotted line);

and |A| = 1, B = 0 (small and large dashes). αeff k
1/2 = 0.2, M∞ = 0.6.

amplitude, and (v) purely vortical. The leading-edge power for these five gusts is
plotted in figure 17, for the case Arg (B) = 0, M∞ = 0.6, and αeff k

1/2 = 0.2. As
expected the maximum power level for the purely vortical gust exceeds that for the
purely entropic gust, but it is interesting that the maximum sound power levels for
the combined gusts are well below the maximum levels for either type of gust in
isolation. We find quite generally that, when the vorticity and entropy disturbances
are combined in phase, the power for a combined gust is less than the maximum of the
power levels for the isolated gust. For αeff k

1/2/β∞ < 0.3, this maximum corresponds
to the isolated vorticity gust.

We next consider vorticity and entropy gusts combined with equal amplitudes but
0◦, 45◦, 90◦, 135◦, and 180◦ out of phase. The leading edge power for these five gusts
is plotted in figure 18, for the case M∞ = 0.6 and αeff k

1/2 = 0.2. Starting from the case
Arg (B) = 0 (corresponding to figure 17), the acoustic power is seen to rise rapidly
with increasing phase difference until the gusts are about 90◦ out of phase. The
gust orientation angle of maximum power also increases monotonically as Arg (B)
is varied from 0 to 90◦, starting from about θg = −40◦ and converging to a value
around +30◦. (Interestingly, a similar migration of the maximum of the acoustic
power curve toward θg = 30◦ occurs in figure 10, where the gust is purely vortical and
the amount of steady loading is the varied parameter.) As the phase difference Arg (B)
increases from 90◦ to 180◦, the power changes only slightly. For values of Arg (B)
beyond 180◦, the leading-edge power curves display a near monotonic decrease in
maximum power with increasing Arg (B), until the power curve for Arg (B) = 0 is
recovered at Arg (B) = 360◦. We note that the maximum power levels for several of
the out-of-phase combined gusts in figure 18 are comparable to the largest levels in
figure 17, which correspond to the isolated vorticity and entropy gusts. Thus, while
further computations remain to be done to fully characterize combined-gust effects,
we conclude that relative phase has a strong influence on the level of the radiated
acoustic power.
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Figure 18. Leading-edge power versus gust orientation angle for combined vorticity and entropy
gusts combined in equal amplitudes (|A| = 0.5, B = 0.5) but with a phase difference given by
Arg (B) = 0◦ (solid line), 45◦ (dots), 90◦ (small dashes), 135◦ (dashes and dots), and 180◦ (small and
large dashes). αeff k

1/2 = 0.2, M∞ = 0.6.

10. Conclusion
The present work has considered the combined effects of airfoil camber and

incidence angle on the sound field generated by interaction with high frequency gusts.
Two important parameters arise naturally in the analysis. These are the effective
leading-edge incidence angle, αeff , and the toal loading parameter, αg . These parameters
are given by expressions which contain both the airfoil incidence angle and its camber
distribution.

The parameter αeff is a measure of the strength of the component of mean flow
around the leading edge, from the lower surface to the upper. Physically, this local
mean-flow component for the cambered airfoil is identical to that for a flat-plate
airfoil at angle αeff . For high frequency gusts (k � 1), the primary noise sources are
located in the local leading-edge region – a region surrounding the leading edge which
scales on the gust wavelength. The relative strength of the steady-loading related noise
sources in the local leading-edge region is proportional to αeff k

1/2.
The sound field generated in the local leading-edge region propagates away to the

far field according to ray theory. Two rays propagate along the airfoil upper and
lower surfaces, respectively, and are scattered at the trailing edge. The strength of
the scattered field from the trailing edge is proportional to the pressure jump of
the leading-edge field across the trailing edge, and here the total-loading parameter
αg enters in the solution. Physically, the steady lift force for the cambered airfoil
is identical to that for a flat-plate airfoil at incidence angle αg . The acoustic rays
which propagate along the upper and lower surfaces of the airfoil experience phase
distortions due to the airfoil steady loading; these phase distortions are proportional
to αgk and are of equal magnitude but opposite sign on the two sides of the airfoil.
Often, the phase distortions due to steady loading cause a significant decrease in the
amplitude of the scattered field from the trailing edge. The acoustic boundary layers
on the surfaces of the cambered airfoil introduce a weaker O(αk1/2) contribution to
the amplitude of the scattered field from the trailing edge.

The far-field sound is a combination of the primary ray field from the leading edge
and the secondary ray field from the trailing edge. Additional transition-region effects
are present at shallow angles downstream of the airfoil. Constructive and destructive
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interference between the leading-edge field and trailing-edge field occurs alternately
as the observation angle is varied. Due to this alternation, the secondary field from
the trailing edge has little impact on the toal sound power radiated to the far field,
although it affects the directivity. Thus, the influence of airfoil steady loading on the
total sound power is correlated very well by the aerodynamic parameter αeff .

Since the trailing-edge and transition fields introduce only secondary modulations
of the primary field from the leading edge, we have investigated the toal sound
power levels and directivity patterns associated with the leading-edge ray field, as
a function of gust characteristics and Mach number. For vortical gusts with even
small amounts of loading (αeff k

1/2 > 0.1), the maximum sound power occurs for a
gust orientation angle θg in the vicinity of 30◦, while for entropy gusts the maximum
sound power occurs for θg = 0. The single parameter αeff k

1/2/β∞ provides a useful
quantity for correlating results generated at different amounts of steady loading and
compressibility. For αeff k

1/2/β∞ < 0.3 the maximum power levels for vorticity gusts are
generally higher than those for entropy gusts, while for αeff k

1/2/β∞ > 0.3 the opposite
is generally true. At modest and high subsonic Mach numbers, the directivity patterns
are a strong function of gust angle.

The results of this paper are relevant to a variety of applications. The isolated
airfoil results presented here can be used directly for low solidity applications such
as helicopter main rotors, with suitable modifications to account for finite span
and blade rotation. For applications where cascade effects are important such as in
aircraft engine blade/vane interactions, a high-frequency theory can be developed
using a singular-perturbation structure similar to that employed in this paper. The
influence of steady aerodynamic loading on the upstream radiation from a flat-plate
cascade has been analysed in this manner by Peake & Kerschen (1997). The leading-
edge ray field, which has been investigated parametrically in this paper, is a crucial
element in their cascade prediction scheme.

The influence of airfoil thickness has not been considered in this paper, but can be
analysed using similar methods. Additional sound source terms due to the thickness-
related mean-flow perturbation appear in the local leading-edge region. In this local
region, the contributions to the unsteady pressure field due to airfoil steady loading
(camber and incidence angle) and airfoil thickness can be superposed. The global
behaviour of the propagation of the sound field away from the leading-edge region
and its subsequent scattering from the trailing edge can then be analysed along
the same lines as in this paper, as will be made clear in a subsequent publication
(Kerschen, Tsai & Reba 1998).
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Appendix
This Appendix contains the directivity functions for the geometric acoustic field

emanating from the airfoil leading edge.
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D0:

D0(θ) = −
Ane

−iπ/4 cos 1
2
θ

β∞(π(δ + w))1/2(δ − w cos θ)
;

D1:

D1(θ) =
i2Anδ

w1/2(δ − w cos θ)3/2
;

D2:

D2(θ) = D2p(θ) + D2c(θ),

D2p(θ) =
−i(δ − w cos θ)f1(−w cos θ) + knf2(−w cos θ)

4 (δ2 + k2
n)(2w (δ − w cos θ))1/2(λ1 + w cos θ) (λ2 + w cos θ)

,

D2c(θ) = −
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;

f1(λ) = [iC2 − 2C4(λ+ δ)] (−δ2 + k2
n − w2 − 2δλ) + [C1 + 2iC3(λ+ δ)]2ikn(λ+ δ),

f2(λ) = [iC2 − 2C4(λ+ δ)] 2ikn (λ+ δ) + [C1 + 2iC3(λ+ δ)](−δ2 + k2
n − w2 − 2δλ),

λ1,2 = −δ
2

[
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]
± ikn
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C2 = i23/2 (knA
∗
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2
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D3:

D3(θ) =
iAn

(w(δ − w cos θ))1/2

[
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∞
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∞
− δ
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]
+
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2
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4
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.

In the expression for D2c(θ), the square roots (λi + δ)1/2 and (λi + w)1/2 are to be
evaluated by introducing branch cuts joining −δ(= −β−2

∞ ) and −w to infinity through
the lower half-plane. The square roots (λi + δ′)1/2 and (λi − w)1/2 are to be evaluated
by introducing branch cuts joining −δ′(= −β−2

∞ ) and w to infinity through the upper
half-plane (see MK95 for full details).
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